References

Bastiansen, O., Hedberg, L. \& Hedberg, K. (1957). J. Chem. Phys. 27, 1311.
Duchamp, D. J. (1964). Amer. Cryst. Assoc. Meeting, Paper B-14, p. 29. Bozeman, Montana.
International Tables for X-ray Crystallography (1962). Vol. III, p. 202. Birmingham: Kynoch Press.
Johnson, C. K. (1965). ORTEP, a Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations. Report ORNL-3794. Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Karle, J. \& Karle, I. L. (1966). Acta Cryst. 21, 849.
Kaufman, H. S., Fankuchen, I. \& Mark, H. (1948). Nature, Lond. 161, 165.
Larson, A. C. (1967). Acta Cryst. 23, 664.
Mathews, F. S. \& Lipscomb, W. N. (1959). J. Phys. Chem. 63, 845.
Schomaker, V. \& Trueblood, K. N. (1968). Acta Cryst. B24, 63.
Shoemaker, D. P., Kindler, H., Sly, W. G. \& Srivastava, R. C. (1965). J. Amer. Chem. Soc. 87, 482.

Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175.

Wilson, A. J. C. (1942). Nature, Lond. 150, 152.

The Crystal and Molecular Structure of N-(1-methyl-3-oxo-butyliden)- N^{\prime} -(1-methyl-2-isonitroso-3-oxobutyliden)ethylenediaminecopper(II), Cu (II) $\left(\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}\right)$

By M. Biagini Cingi, A.Chiesi Villa, A. Gaetani Manfredotti, C. Guastini and M. Nardelli Istituto di Chimica Generale ed Inorganica, Università degli Studi, Parma, Italy-Centro di Studio per la Strutturistica Diffrattometrica del C.N.R.

(Received 2 July 1971)

Abstract

The crystal structure of N-(1-methyl-3-oxobutyliden)- N^{\prime}-(1-methyl-2-isonitroso-3-oxobutyliden)ethylenediaminecopper(II), $\mathrm{Cu}(\mathrm{II})\left(\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}\right)$, has been determined from 2538 independent reflexions, measured with $\mathrm{Cu} K \alpha$ radiation by a single-crystal diffractometer and refined by the least-squares methods to $R=5 \cdot 1 \%$. The triclinic ($P \overline{1}$) unit cell of dimensions $a=12 \cdot 11$ (1), $b=8 \cdot 15(1), c=7 \cdot 92$ (1) \AA, $\alpha=102 \cdot 1(1)^{\circ}, \beta=109 \cdot 6(1)^{\circ}, \gamma=105 \cdot 6(1)^{\circ}$, contains two complex molecules, where copper coordinates to two oxygen $[\mathrm{Cu}-\mathrm{O}(1)=1.887(6) \AA, \mathrm{Cu}-\mathrm{O}(2)=1.926(13) \AA$] and two nitrogen atoms $[\mathrm{Cu}-\mathrm{N}(1)=$ 1.937 (14) $\AA, \mathrm{Cu}-\mathrm{N}(2)=1.937$ (7) \AA] in a planar arrangement. The nitric oxide does not behave as a free ligand, but interacts with the organic molecule forming an oxime group which coordinates to metal through oxygen.

Introduction

The reaction of nitric oxide with bis(acetylacetone)ethylenediimine metal-complexes was studied by Masuda, Tamaki \& Shinra (1969), who found, from spectroscopic evidence, that the nitric oxide does not coordinate to metal as a free ligand in complexes containing $\mathrm{Ni}(\mathrm{II}), \mathrm{Cu}(\mathrm{II})$ and $\mathrm{Pd}(\mathrm{II})$. On the contrary, the NO group interacts with the organic ligand giving complex compounds for which they suggest the structural formulae:

(1)

(II)
(I) obtained by partial reaction, (II) by complete reaction of NO. The conclusion reached by these authors
is quite right as far as the direct coordination of NO to the metal is concerned, but the role of the nitrous group, as given in their formulae, is not convincing. Therefore, to define this point, an X-ray analysis of (I) with $\mathrm{M}=\mathrm{Cu}(\mathrm{II})$ was undertaken, also in connexion with a general programme, in progress in this laboratory, concerning structures of metal complexes of polydentate ligands containing nitrogen.

Experimental

Dark red-violet crystals of the compound were prepared by treatment of bis(acetylacetone)ethylenedii-mine- Cu (II) with nitric oxide as described by Masuda, Tamaki \& Shinra (1969). The crystals are flattened prisms elongated along [001] showing pleochroic effects: observed perpendicularly to the flattening, they appear red or pinky-yellow depending on whether the electric vector vibrates perpendicular or parallel to the elongation.

The unit-cell dimensions, determined from rotation and Weissenberg photographs and refined by an
'on-line' single-crystal automated Siemens diffractometer using $\mathrm{Cu} K \alpha$ radiation $(\lambda=1 \cdot 5418 \AA)$, are as follows:
$\mathrm{Cu}\left(\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}\right)$; F.W. 314.9
$a=12 \cdot 11$ (1), $b=8 \cdot 15$ (1), $c=7 \cdot 92$ (1) \AA;
$\alpha=102 \cdot 1(1)^{\circ}, \beta=109 \cdot 6(1)^{\circ}, \gamma=105 \cdot 6(1)^{\circ}$;
$V=668.7 \AA^{3}, Z=2, D_{\text {obs }}=1.56 \mathrm{~g} . \mathrm{cm}^{-3}, D_{\text {calc }}=1.56$
g. $\mathrm{cm}^{-3}, F(000)=326, \mu=24 \cdot 3 \mathrm{~cm}^{-1}(\mathrm{Cu} K \alpha)$.

Space group $P \overline{1}$ (from structural analysis).
Three-dimensional intensity data were collected on the same diffractometer using the $\omega / 2 \theta$ scan technique $\left(2 \theta_{\max }=140^{\circ}\right)$ and $\mathrm{Cu} K \alpha$ radiation. Intensities of 2538 reflexions were measured; of these 1633, having $I>2 \sigma(I)$, were used in the refinement.

The structure amplitudes were obtained after the usual Lorentz and polarization reduction and the absolute scale was established by successive comparison with the calculated values. No correction for absorption was applied, as the sample used to collect data was small enough to allow this (it was roughly a cylinder with a mean radius of 0.005 cm).

Determination and refinement of the structure

The structure was solved by the heavy-atom technique, starting from a three-dimensional Patterson distribution and only one Fourier synthesis was sufficient to localize all the non-hydrogen atoms. The refinement was carried out by block-diagonal least squares, minimizing the function $\sum w(\Delta F)^{2}$ [unit weights were assumed, being $\sum(\Delta F)^{2} /(m-n)=0.95$, where m is the number of observations and n the number of parameters (Cruickshank, Pilling, Bujosa, Lovell \& Truter, 1961)]. This reduced R to $6 \cdot 2 \%$. All the hydrogen atoms were then directly located by a final $F_{o}-F_{c}$

Fig.1. $\mathrm{Cu}(\mathrm{II})\left(\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}\right)$: clinographic projection of the structure.
synthesis and the complete least-squares refinement improved the conventional R index to $5 \cdot 1 \%$.

Table 1 shows the final atomic parameters and the corresponding e.s.d.'s. Copies of the observed and calculated structure factors are available from the authors on request.

The atomic scattering factors used throughout the calculations were those of Cromer \& Mann (1968) for $\mathrm{Cu}, \mathrm{O}, \mathrm{N}$ and C and those of Stewart, Davidson \& Simpson (1965) for H.

Table 1. Final atomic fractional coordinates and temperature factors $\left(8 \pi^{2} \AA^{2}\right)$
Estimated standard deviations are given in parentheses. The anisotropic thermal parameters are given in the form: $\exp \left[-0 \cdot 25\left(h^{2} B_{11} a^{* 2}+\ldots+2 k l B_{23} b^{*} c^{*}\right)\right]$.

	x / a	y / b	z / c	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
Cu	494 (1)	368 (1)	2357 (1)	$4 \cdot 25$ (3)	$3 \cdot 55$ (3)	$3 \cdot 94$ (3)	1.59 (2)	2.07 (2)	1.74 (2)
$\mathrm{O}(1)$	1907 (3)	- 185 (5)	2333 (5)	$3 \cdot 52$ (16)	$3 \cdot 67$ (16)	5.39 (20)	1.63 (13)	2.67 (15)	2.79 (15)
$\mathrm{O}(2)$	-92 (3)	-1860 (4)	2831 (5)	$3 \cdot 40$ (16)	3.28 (15)	$4 \cdot 65$ (18)	1.61 (13)	2.36 (14)	2.06 (14)
$\mathrm{O}(3)$	-4208 (4)	-2788 (6)	1786 (7)	$3 \cdot 27$ (18)	$5 \cdot 85$ (24)	8.80 (30)	1.79 (17)	2.35 (19)	2.84 (22)
N(1)	1086 (4)	2691 (5)	2037 (6)	$3 \cdot 52$ (19)	2.86 (17)	$3 \cdot 22$ (19)	1.02 (15)	$1 \cdot 68$ (16)	1.49 (15)
N(2)	- 919 (4)	963 (5)	2527 (6)	$3 \cdot 14$ (18)	2.58 (16)	$3 \cdot 20$ (19)	1.23 (14)	1.73 (15)	$1 \cdot 25$ (14)
N(3)	-1202 (4)	-2648 (6)	2801 (6)	$2 \cdot 80$ (18)	$3 \cdot 63$ (19)	$3 \cdot 74$ (20)	1.33 (15)	$1 \cdot 64$ (16)	1.73 (16)
C(1)	3906 (6)	149 (9)	2308 (11)	$4 \cdot 30$ (30)	$6 \cdot 65$ (37)	$10 \cdot 21$ (50)	$3 \cdot 21$ (28)	4.52 (33)	$5 \cdot 56$ (37)
C(2)	2893 (5)	888 (8)	2285 (8)	$3 \cdot 30$ (23)	4.74 (27)	3.96 (26)	1.70 (21)	2.03 (21)	1.96 (22)
C(3)	3056 (5)	2590 (7)	2152 (8)	3.06 (23)	4.03 (25)	$5 \cdot 10$ (29)	1.23 (20)	2.09 (22)	2.00 (22)
C(4)	2171 (5)	3435 (7)	2012 (7)	3.91 (24)	2.69 (20)	3.53 (24)	$0 \cdot 67$ (18)	1.80 (20)	$0 \cdot 97$ (18)
C(5)	2535 (6)	5281 (7)	1776 (9)	$5 \cdot 70$ (33)	2.96 (24)	$6 \cdot 63$ (36)	$1 \cdot 17$ (23)	$3 \cdot 49$ (29)	2.29 (24)
C(6)	137 (5)	3512 (7)	1734 (8)	$4 \cdot 35$ (26)	2.92 (22)	$5 \cdot 17$ (29)	1.77 (20)	2.66 (23)	2.04 (21)
C(7)	- 654 (5)	2917 (7)	2809 (9)	4.98 (28)	2.71 (21)	$5 \cdot 78$ (32)	$2 \cdot 13$ (21)	3.06 (26)	1.76 (21)
C(8)	-1821 (4)	51 (6)	2854 (7)	2.88 (20)	$3 \cdot 36$ (21)	$2 \cdot 65$ (21)	$1 \cdot 60$ (18)	$1 \cdot 20$ (17)	1.34 (17)
C(9)	-2614 (5)	887 (8)	3538 (9)	$4 \cdot 63$ (28)	$4 \cdot 86$ (28)	$5 \cdot 60$ (31)	3.06 (24)	$3 \cdot 18$ (25)	2.84 (25)
$\mathrm{C}(10)$	-2012 (4)	- 1871 (6)	2720 (7)	$3 \cdot 12$ (21)	$3 \cdot 21$ (21)	$3 \cdot 13$ (22)	1.05 (18)	1.72 (18)	1.54 (18)
C(11)	-3261 (5)	-3112 (8)	2405 (8)	$3 \cdot 25$ (23)	$4 \cdot 48$ (26)	$4 \cdot 21$ (27)	1.56 (21)	1.91 (21)	$1 \cdot 46$ (22)
C(12)	-3358 (6)	-4882 (8)	2802 (10)	$4 \cdot 66$ (29)	$4 \cdot 37$ (28)	$6 \cdot 65$ (37)	$1 \cdot 19$ (24)	$3 \cdot 26$ (28)	3.00 (27)

Table 1 (cont.)
Hydrogen atoms: Fractional coordinates are multiplied by 10^{3}.

	x / a	y / b	z / c	B
H(1.1)	343 (5)	-126 (8)	111 (8)	$6 \cdot 5$ (1.5)
H(1.2)	430 (5)	8 (8)	341 (8)	$6 \cdot 1$ (1.5)
H(1.3)	441 (6)	69 (8)	174 (8)	$7 \cdot 1$ (1.6)
H(3.1)	383 (5)	317 (7)	231 (7)	$4 \cdot 2$ (1.2)
H(5.1)	333 (5)	577 (8)	210 (8)	$6 \cdot 0$ (1-4)
H(5.2)	187 (5)	523 (7)	53 (7)	$5 \cdot 4$ (1.3)
H(5.3)	259 (5)	617 (7)	299 (7)	$5 \cdot 2$ (1.3)
H(6.1)	49 (6)	457 (8)	206 (9)	7.0 (1.6)
H(6.2)	- 51 (5)	313 (7)	26 (8)	$5 \cdot 4$ (1.4)
H(7.1)	- 19 (5)	366 (7)	427 (7)	$4 \cdot 6$ (1.2)
H(7.2)	-150 (5)	302 (7)	212 (7)	$4 \cdot 6$ (1.2)
H(9.1)	-302 (5)	24 (7)	410 (7)	$4 \cdot 7$ (1.3)
H(9.2)	-219 (5)	203 (7)	453 (7)	$5 \cdot 3$ (1.3)
H(9.3)	-319 (6)	104 (8)	276 (9)	7.2 (1.6)
H(12.1)	-259 (5)	-485 (7)	361 (8)	$5 \cdot 4$ (1.3)
H(12.2)	-374 (5)	-484 (8)	380 (8)	$6 \cdot 7(1.5)$
H(12.3)	-363 (6)	-565 (9)	143 (9)	$8 \cdot 1$ (1.7)

All calculations were performed on the CDC 6600 computer of the Centro di Calcolo Interuniversitario dell'Italia Nord-Orientale (Bologna), using programs of Immirzi (1967).

Description of the structure and discussion

As already observed from infrared spectrum evidence by Masuda, Tamaki \& Shinra (1969), the NO molecule does not act as a free ligand, and the complex is not a nitrosyl one, but a reaction occurs between NO and bis(acetylacetone)ethylenediimine- $\mathrm{Cu}(\mathrm{II})$ in the γ-positon of an acetylacetone group, giving an oxime derivative. An important difference is however observed with respect to the structure postulated from the infrared spectra by Masuda et al. In fact, the coordination does not involve the nitrogen atom, but the oxygen atom
of the oxime group, as can be seen from the projections of Figs. 1 and 2.

Coordination around the metal is planar and involves two nitrogen atoms $\mathrm{N}(1)$ and $\mathrm{N}(2)$ from the ethylenediimine moiety and two oxygen atoms $\mathrm{O}(1)$ and $\mathrm{O}(2)$ from the CO and NO groups of the ligand. The four ligand atoms define a plane, \dagger from which copper is displaced by $0.05 \AA$. The N-(1-methyl-3-oxo-butyliden)- N^{\prime}-(1-methyl-2-isonitroso-3-oxobutyliden)ethylenediamine molecule acts as a tetradentate ligand and this results in the formation of one five-membered and two six-membered coordination rings. Of these only the $\mathrm{O}(1) \mathrm{C}(2) \mathrm{C}(3) \mathrm{C}(4) \mathrm{N}(1)$ residue, resulting from the acetylacetone moiety of the ligand, is planar. \ddagger The other two rings are distorted: the five-membered ring as a consequence of the ethylenediimine conformation (the internal rotation angle around $\mathrm{C}(6)-\mathrm{C}(7)$ bond is $42 \cdot 0^{\circ}$); the second six-membered ring as a consequence of the double bond localization between $\mathrm{C}(8)-\mathrm{N}(2)=$ 1.283 (8) \AA and between $\mathrm{C}(10)-\mathrm{N}(3)=1.294$ (9) \AA. This is in agreement with the single-bond character of the $\mathrm{C}(8)-\mathrm{C}(10)=1.495(15) \AA$ bond [expected value for $\mathrm{C}\left(s p^{2}\right)=\mathrm{N}\left(s p^{2}\right)$ is $1.266 \AA$ (Donohue, Lavine \& Rollett, 1956) and for $\mathrm{C}\left(s p^{2}\right)-\mathrm{C}\left(s p^{2}\right)$ is $1 \cdot 487 \AA$ (Allmann \& Elner, 1968)]. The internal rotation angle around $\mathrm{C}(8)-\mathrm{C}(10)$ is $23 \cdot 8^{\circ}$.
\dagger The least-squares plane is: $0 \cdot 1013 X^{\prime}+0 \cdot 1123 Y^{\prime}+0 \cdot 9884 Z^{\prime}$ $=1 \cdot 6446$. The orthogonal $X^{\prime}, Y^{\prime}, Z^{\prime}$ coordinates, expressed in \AA, are obtained from the x, y, z triclinic ones using the matrix:

$$
\left(\begin{array}{llc}
\sin \gamma & 0 & -\sin \alpha \cos \beta^{*} \\
\cos \gamma & 1 & \cos \alpha \\
0 & 0 & \sin \alpha \sin \beta^{*}
\end{array}\right)
$$

\ddagger The least-squares plane is: $\quad-0.0088 X^{\prime}+0.0764 Y^{\prime}+$ $0.9970 Z^{\prime}=1.5363$.

Fig. 2. $\mathrm{Cu}(\mathrm{II})\left(\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}\right)$: projection of the structure on (001).

Table 2. Distances and angles

i	\bar{x}	\bar{y}	\bar{z}	iv	$x-1$	y	z
ii	\bar{x}	\bar{y}	$1-z$	v	x	$y-1$	z
iii	$\bar{x}-1$	$\bar{y}-1$	\bar{z}	vi	\bar{x}	$1-y$	$1-z$

(a) In the coordination plane
$\mathrm{Cu}-\mathrm{O}(1)$
$\mathrm{Cu}-\mathrm{O}(2)$
$\mathrm{Cu}-\mathrm{N}(1)$
$\mathrm{Cu}-\mathrm{N}(2)$
(b) In the complex molecule
$\mathrm{O}(1)-\mathrm{C}(2)$
$\mathrm{O}(2)-\mathrm{N}(3)$
$\mathrm{O}(3)-\mathrm{C}(11)$
$\mathrm{N}(1)-\mathrm{C}(4)$
$\mathrm{N}(1)-\mathrm{C}(6)$
$\mathrm{N}(2)-\mathrm{C}(7)$
$\mathrm{N}(2)-\mathrm{C}(8)$
$\mathrm{N}(3)-\mathrm{C}(10)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(2)$
$\mathrm{Cu}-\mathrm{O}(1)-\mathrm{C}(3)$
$\mathrm{Cu}-\mathrm{O}(2)-\mathrm{N}(3)$
$\mathrm{Cu}-\mathrm{N}(1)-\mathrm{C}(4)$
$\mathrm{Cu}-\mathrm{N}(1)-\mathrm{C}(6)$
$\mathrm{Cu}-\mathrm{N}(2)-\mathrm{C}(8)$
$\mathrm{Cu}-\mathrm{N}(2)-\mathrm{C}(7)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(1)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(5)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(1)$
$\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{C}(12)$
(c) Involving hydrogen

$\mathrm{C}(1)-\mathrm{H}(1.1)$	$1.17(6) \AA$
$\mathrm{C}(1)-\mathrm{H}(1.2)$	$0.86(6)$
$\mathrm{C}(1)-\mathrm{H}(1.3)$	$0.95(7)$
$\mathrm{C}(3)-\mathrm{H}(3.1)$	$0 \cdot 88(6)$
$\mathrm{C}(5)-\mathrm{H}(5.1)$	$0.85(6)$
$\mathrm{C}(5)-\mathrm{H}(5.2)$	$1.03(5)$
$\mathrm{C}(5)-\mathrm{H}(5.3)$	$1.04(5)$
$\mathrm{C}(6)-\mathrm{H}(6.1)$	$0.79(7)$
$\mathrm{C}(6)-\mathrm{H}(6.2)$	$1.08(6)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1.1)$	$108(3)^{\circ}$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1.2)$	$112(4)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1.3)$	$113(4)$
$\mathrm{H}(1.1)-\mathrm{C}(1)-\mathrm{H}(1.2)$	$112(6)$
$\mathrm{H}(1.1)-\mathrm{C}(1)-\mathrm{H}(1.3)$	$94(5)$
$\mathrm{H}(1.2)-\mathrm{C}(1)-\mathrm{H}(1.3)$	$117(6)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3.1)$	$112(4)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3.1)$	$122(4)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5.1)$	$113(4)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5.2)$	$109(3)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5.3)$	$105(3)$
$\mathrm{H}(5.1)-\mathrm{C}(5)-\mathrm{H}(5.2)$	$122(5)$
$\mathrm{H}(5.1)-\mathrm{C}(5)-\mathrm{H}(5.3)$	$92(5)$
$\mathrm{H}(5.2)-\mathrm{C}(5)-\mathrm{H}(5.3)$	$114(5)$
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{H}(6.1)$	$108(5)$
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{H}(6.2)$	$114(3)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6.1)$	$114(5)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6.2)$	$108(3)$

(d) van der Waals contacts

$\mathrm{Cu}-\mathrm{N}\left(1^{\mathrm{i}}\right)$	$3 \cdot 362(7) \AA$
$\mathrm{O}(1)-\mathrm{N}\left(2^{\mathrm{i}}\right)$	$3 \cdot 482(8)$
$\mathrm{N}(1)-\mathrm{O}\left(2^{\mathrm{i}}\right)$	$3.481(8)$
$\mathrm{N}(2)-\mathrm{O}\left(2^{\mathrm{ii}}\right)$	$3 \cdot 304(7)$
$\mathrm{N}(3)-\mathrm{N}\left(2^{\mathrm{ii}}\right)$	$3 \cdot 430(8)$
$\mathrm{C}(12)-\mathrm{O}\left(3^{\mathrm{iii}}\right)$	$3 \cdot 522(10)$

$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(2)$
$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{N}(2)$
$\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(2)$
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}(1)$

$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(6)$
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(7)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(2)$
$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(8)$
$\mathrm{N}(2)-\mathrm{C}(8)-\mathrm{C}(9)$
$\mathrm{C}(10)-\mathrm{C}(8)--\mathrm{C}(9)$
$\mathrm{N}(2)-\mathrm{C}(8)-\mathrm{C}(10)$
$\mathrm{C}(8)-\mathrm{C}(10)-\mathrm{C}(11)$
$\mathrm{N}(3)-\mathrm{C}(10)-\mathrm{C}(11)$
$\mathrm{C}(8)-\mathrm{C}(10)-\mathrm{N}(3)$
$\mathrm{C}(10)-\mathrm{N}(3)-\mathrm{O}(2)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{O}(3)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$

$\mathrm{H}(6.1)-\mathrm{C}(6)-\mathrm{H}(6.2)$	$105(6)^{\circ}$
$\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{H}(7.1)$	$110(3)$
$\mathrm{N}(2)-\mathrm{C}(7) \mathrm{H}(7.2)$	$107(3)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7.1)$	$112(3)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7.2)$	$105(3)$
$\mathrm{H}(7.1)-\mathrm{C}(7)-\mathrm{H}(7.2)$	$115(5)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9.1)$	$113(4)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9.2)$	$117(4)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9.3)$	$119(5)$
$\mathrm{H}(9.1)-\mathrm{C}(9)-\mathrm{H}(9.2)$	$100(5)$
$\mathrm{H}(9.1)-\mathrm{C}(9)-\mathrm{H}(9.3)$	$102(6)$
$\mathrm{H}(9.2)-\mathrm{C}(9)-\mathrm{H}(9.3)$	$103(6)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12.1)$	$112(4)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12.2)$	$104(4)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12.3)$	$96(4)$
$\mathrm{H}(12.1)-\mathrm{C}(12)-\mathrm{H}(12.2)$	$95(5)$
$\mathrm{H}(12.1)-\mathrm{C}(12)-\mathrm{H}(12.3)$	$112(6)$
$\mathrm{H}(12.2)-\mathrm{C}(12)-\mathrm{H}(12.3)$	$137(0)$

$\mathrm{C}(9)-\mathrm{C}\left(1^{\text {iv }}\right.$)	3.834 (13) \AA
$\mathrm{C}(1)-\mathrm{C}\left(5^{v}\right)$	$3 \cdot 735$ (29)
$\mathrm{C}(9)-\mathrm{O}\left({ }^{\text {iij }}\right.$)	$3 \cdot 304$ (10)
$\mathrm{C}(9)-\mathrm{O}\left(2^{\text {iij }}\right.$)	$3 \cdot 310$ (8)
$\mathrm{C}(7)-\mathrm{C}\left(7^{\mathrm{vi}}\right)$	$3 \cdot 813$ (15)
$\mathrm{Cu}-\mathrm{Cu}^{i}$	3.377 (5)

The $\mathrm{Cu}-\mathrm{O}$ and $\mathrm{Cu}-\mathrm{N}$ distances quoted in Table 2 and in Fig. 1 agree well with those found in other complexes, the $\mathrm{C}-\mathrm{N}$ being on the shorter side of the range usually observed for this bond (Biagini Cingi, Guastini, Musatti \& Nardelli, 1970; Ghilardi \& Lingafelter, 1970; Matthew \& Kunchur, 1970 ; Gurr, 1968).
The ethylene bridge $\mathrm{C}(6)-\mathrm{C}(7)$ is trans with respect to the coordination plane $[C(6)$ and $C(7)$ are out of the coordination plane by -0.19 and $+0.38 \AA$ respectively]. This situation, which is usual for bridged compounds of this sort, is not observed in the adduct formed by N, N^{\prime}-ethylenebis(acetylacetoneiminato)copper(II) with methylammonium perchlorate, in which Baker, Hall \& Waters (1970) found a cis-ethylene bridge. The $C(6)-C(7)$ distance ($1 \cdot 532$ (9) \AA) corresponds well to the theoretical value for $\mathrm{C}\left(s p^{3}\right)$ $\mathrm{C}\left(s p^{3}\right)$ single bonds.

The acetylacetone moiety of the molecule, in agreement with the π-delocalization indicated by the bond lengths, is planar excepting the $C(1)$ and $C(5)$ methyl groups which are out of the plane, both by 0.07 A. This plane is not coincident with the coordination plane, but forms with it a dihedral angle of $6 \cdot 7^{\circ}$. The mean plane through $\mathrm{O}(2) \mathrm{N}(3) \mathrm{C}(10) \mathrm{C}(8) \mathrm{N}(2)$ forms a dihedral angle of $6 \cdot 0^{\circ}$ with the coordination plane. The $\mathrm{C}(10) \mathrm{C}(11) \mathrm{C}(12) \mathrm{O}(3)$ group is planar (the leastsquares plane is: $0.2597 X^{\prime}-0.2324 Y^{\prime}-0.9372 Z^{\prime}=$ $-2 \cdot 3273$) with a double bond localized between $\mathrm{C}(11)-\mathrm{O}(3)=1 \cdot 210(9) \AA$ and the plane is rotated around $\mathrm{C}(10)-\mathrm{C}(11)$ by $18 \cdot 5^{\circ}$, in agreement with the singlebond character of this bond. All the methyl groups are involved in bonds of $\mathrm{C}\left(s p^{3}\right)-\mathrm{C}\left(s p^{2}\right)$ type and the distances (quoted in Table 2) are consistent with this situation (expected value for $\mathrm{C}\left(s p^{3}\right)-\mathrm{C}\left(s p^{2}\right)=1.501 \AA$; Lide, 1962).

Two complex molecules are related by a centre of symmetry in such a way that the distance between adjacent copper atoms along [010] is $3 \cdot 377$ (5) \AA. The angle formed by the $\mathrm{Cu}-\mathrm{Cu}^{i}$ direction and the coordination plane is $81 \cdot 8^{\circ}$, so that the whole structure can be considered as formed by discrete molecules which seem to be joined together in dimers through a very feeble metal-metal interaction.

All the other contacts are consistent with the van der Waals radii requirements as shown in Table 2.

References

Allmann, R.A. \& Elner, H.E. (1968). Chem. Ber. 101, 2522.
Baker, E. N., Hall, D. \& Waters, T. N. (1970). J. Chem. Soc. (A), p. 396.
Biagini Cingi, M., Guastini, C., Musatti, A. \& Nardelli, M. (1970). Acta Cryst. B26, 1836.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321.
Cruickshank, D. W. J., Pilling, D. E., Bujosa, A., Lovell, F. M. \& Truter, M. R. (1961). In Computing Methods and the Phase Problem in X-Ray Crystal Analysis. Edited by R. Pepinsky, J. M. Robertson \& J. C. Speakman, p. 47.
Donohue, J., Lavine, L. R. \& Rollett, J. S. (1956). Acta Cryst. 9, 655.
Ghilardi, C. A. \& Lingafelter, E. C. (1970). Acia Cryst. B26, 1807.
Gurr, G. E. (1968). Acta Cryst. B24, 1511.
Immirzi, A. (1967). Ric. Sci. 37, 743.
LIDE, D. R.(1962). Tetrahedron, 17, 125.
Masuda, I., Tamaki, M. \& Shinra, K. (1969). Bull. Chem. Soc. Japan, 42, 157.
Matthew, M. \& Kunchur, N. R. (1970). Acta Cryst. B26, 2054.

Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175.

Acta Cryst. (1972). B28, 1079

Etude Cristallographique du Tétrachlorobaltate(II) d'Histamine Diprotonée

Par J.J. Bonnet et Y.Jeannin
U.E.R. de Chimie Inorganique et Laboratoire Associé au C.N.R.S. no. 160, Université Paul Sabatier de Toulouse, 38 rue des 36 Ponts, 31-Toulouse, France

(Reçu le 15 juillet 1971)

Abstract

The tetrachlorocobaltate(II) of diprotonated histamine crystallizes in space group Pna2 of the orthorhombic system. 804 hkl reflexions were measured on a single crystal at room temperature. Refinement by full-matrix least-squares methods led to an R value of 0.045 . The crystal is formed from very distorted tetrahedral $\left(\mathrm{CoCl}_{4}\right)^{2-}$ ions: the largest difference of the $\mathrm{Co}-\mathrm{Cl}$ bond lengths is $0.062 \AA$ and the largest difference of the $\mathrm{Cl}-\mathrm{Co}-\mathrm{Cl}$ angles, $9 \cdot 6^{\circ}$; it also contains almost planar (Hist. $\left.\mathrm{H}_{2}\right)^{2+}$ cations in which two protons are attached to the histamine molecule through the nitrogen atoms of the cetimine group of the imidazole ring and the primary amine group of the side chain.

Introduction

Ce travail se place dans le cadre général de l'étude cristallochimique des composés de coordination de
l'histamine avec certains métaux de transition, notamment ceux de la fin de la première série de transition (Bonnet, Jeannin, Jeannin \& Rzotkiewicz, 1969; Bonnet \& Jeannin, 1970a, b, c, 1971).

